{ "id": "2012.02376", "version": "v1", "published": "2020-12-04T02:58:51.000Z", "updated": "2020-12-04T02:58:51.000Z", "title": "A vertex model for LLT polynomials", "authors": [ "Sylvie Corteel", "Andrew Gitlin", "David Keating", "Jeremy Meza" ], "categories": [ "math.CO", "math-ph", "math.MP", "math.PR" ], "abstract": "We describe a novel Yang-Baxter integrable vertex model. From this vertex model we construct a certain class of partition functions that we show are equal to the LLT polynomials of Lascoux, Leclerc, and Thibon. Using the vertex model formalism, we give alternate proofs of many properties of these polynomials, including symmetry and a Cauchy identity.", "revisions": [ { "version": "v1", "updated": "2020-12-04T02:58:51.000Z" } ], "analyses": { "subjects": [ "05E05" ], "keywords": [ "llt polynomials", "novel yang-baxter integrable vertex model", "vertex model formalism", "partition functions", "alternate proofs" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }