{ "id": "2012.01851", "version": "v1", "published": "2020-12-03T11:51:00.000Z", "updated": "2020-12-03T11:51:00.000Z", "title": "(0,2) Mirror Symmetry on homogeneous Hopf surfaces", "authors": [ "Luis Álvarez-Cónsul", "Andoni De Arriba de La Hera", "Mario Garcia-Fernandez" ], "comment": "55 pages", "categories": [ "math.DG", "hep-th", "math.AG", "math.QA" ], "abstract": "In this work we find the first examples of (0,2) mirror symmetry on compact non-K\\\"ahler complex manifolds. For this we follow Borisov's approach to mirror symmetry using vertex algebras and the chiral de Rham complex. Our examples of (0,2) mirrors are given by pairs of Hopf surfaces endowed with a Bismut-flat pluriclosed metric. Requiring that the geometry is homogeneous, we reduce the problem to the study of Killing spinors on a quadratic Lie algebra and the construction of associated $N=2$ superconformal structures on the superaffine vertex algebra, combined with topological T-duality.", "revisions": [ { "version": "v1", "updated": "2020-12-03T11:51:00.000Z" } ], "analyses": { "keywords": [ "mirror symmetry", "homogeneous hopf surfaces", "quadratic lie algebra", "superaffine vertex algebra", "rham complex" ], "note": { "typesetting": "TeX", "pages": 55, "language": "en", "license": "arXiv", "status": "editable" } } }