{ "id": "2012.01003", "version": "v1", "published": "2020-12-02T07:41:30.000Z", "updated": "2020-12-02T07:41:30.000Z", "title": "Categories $\\mathcal{O}$ for Root-Reductive Lie Algebras: II. Translation Functors and Tilting Modules", "authors": [ "Thanasin Nampaisarn" ], "comment": "19 pages", "categories": [ "math.RT" ], "abstract": "This is the second paper of a series of papers on a version of categories $\\mathcal{O}$ for root-reductive Lie algebras. Let $\\mathfrak{g}$ be a root-reductive Lie algebra over an algebraically closed field $\\mathbb{K}$ of characteristic $0$ with a splitting Borel subalgebra $\\mathfrak{b}$ containing a splitting maximal toral subalgebra $\\mathfrak{h}$. For some pairs of blocks $\\overline{\\mathcal{O}}[\\lambda]$ and $\\overline{\\mathcal{O}}[\\mu]$, the subcategories whose objects have finite length are equivalence via functors obtained by the direct limits of translation functors. Tilting objects can also be defined in $\\overline{\\mathcal{O}}$. There are also universal tilting objects $D(\\lambda)$ in parallel to the finite-dimensional cases.", "revisions": [ { "version": "v1", "updated": "2020-12-02T07:41:30.000Z" } ], "analyses": { "subjects": [ "17B10", "17B20", "17B22", "17B65" ], "keywords": [ "root-reductive lie algebra", "translation functors", "tilting modules", "categories", "splitting maximal toral subalgebra" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }