{ "id": "2012.00610", "version": "v1", "published": "2020-11-30T10:25:08.000Z", "updated": "2020-11-30T10:25:08.000Z", "title": "Estimates of the bounds of $π(x)$ and $π((x+1)^{2}-x^{2})$", "authors": [ "Connor Paul Wilson" ], "comment": "8 pages, 0 figures", "categories": [ "math.NT" ], "abstract": "We show the following bounds on the prime counting function $\\pi(x)$ using principles from analytic number theory, giving an estimate: $$2 \\log 2 \\geq \\limsup_{x \\rightarrow \\infty} \\frac{\\pi(x)}{x / \\log x} \\geq \\liminf_{x \\rightarrow \\infty} \\frac{\\pi(x)}{x / \\log x} \\geq \\log 2$$ for all $x$ sufficiently large. We also conjecture about the bounding of $\\pi((x+1)^{2}-x^{2})$, as is relevant to Legendre's conjecture about the number of primes in the aforementioned interval such that: $$ \\left \\lfloor\\frac{1}{2}\\left(\\frac{\\left(x+1\\right)^{2}}{\\log\\left(x+1\\right)}-\\frac{x^{2}}{\\log x}\\right)-\\frac{\\left(\\log x\\right)^{2}}{\\log\\left(\\log x\\right)}\\right \\rfloor \\leq \\pi((x+1)^{2}-x^{2}) \\leq $$ $$ \\left \\lfloor\\frac{1}{2}\\left(\\frac{\\left(x+1\\right)^{2}}{\\log\\left(x+1\\right)}-\\frac{x^{2}}{\\log x}\\right) + \\log^{2}x\\log\\log x \\right \\rfloor$$", "revisions": [ { "version": "v1", "updated": "2020-11-30T10:25:08.000Z" } ], "analyses": { "keywords": [ "analytic number theory", "legendres conjecture", "prime counting function", "principles", "sufficiently large" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }