{ "id": "2011.15107", "version": "v1", "published": "2020-11-30T18:41:22.000Z", "updated": "2020-11-30T18:41:22.000Z", "title": "Auslander's formula and correspondence for exact categories", "authors": [ "Ruben Henrard", "Sondre Kvamme", "Adam-Christiaan van Roosmalen" ], "comment": "36 pages, comments welcome!", "categories": [ "math.RT" ], "abstract": "The Auslander correspondence is a fundamental result in Auslander-Reiten theory. In this paper we introduce the category $\\operatorname{mod_{\\mathsf{adm}}}(\\mathcal{E})$ of admissibly finitely presented functors and use it to give a version of Auslander correspondence for any exact category $\\mathcal{E}$. An important ingredient in the proof is the localization theory of exact categories. We also investigate how properties of $\\mathcal{E}$ are reflected in $\\operatorname{mod_{\\mathsf{adm}}}(\\mathcal{E})$, for example being (weakly) idempotent complete or having enough projectives or injectives. Furthermore, we describe $\\operatorname{mod_{\\mathsf{adm}}}(\\mathcal{E})$ as a subcategory of $\\operatorname{mod}(\\mathcal{E})$ when $\\mathcal{E}$ is a resolving subcategory of an abelian category. This includes the category of Gorenstein projective modules and the category of maximal Cohen-Macaulay modules as special cases. Finally, we use $\\operatorname{mod_{\\mathsf{adm}}}(\\mathcal{E})$ to give a bijection between exact structures on an idempotent complete additive category $\\mathcal{C}$ and certain resolving subcategories of $\\operatorname{mod}(\\mathcal{C})$.", "revisions": [ { "version": "v1", "updated": "2020-11-30T18:41:22.000Z" } ], "analyses": { "subjects": [ "18E05", "16G50", "18E35" ], "keywords": [ "exact category", "auslanders formula", "auslander correspondence", "resolving subcategory", "maximal cohen-macaulay modules" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable" } } }