{ "id": "2011.14524", "version": "v1", "published": "2020-11-30T03:33:47.000Z", "updated": "2020-11-30T03:33:47.000Z", "title": "Weil-Chatelet Groups of Rational Elliptic Surfaces", "authors": [ "Nadir Hajouji" ], "comment": "20 pages", "categories": [ "math.AG", "math.NT" ], "abstract": "We classify pairs $(S, \\gamma)$, consisting of a rational elliptic surface $S$ and a Galois cover $\\gamma$ of the base, which satisfy a condition we call $\\mathcal{L}$-stability. We explain how to use the theory of Mordell-Weil lattices to compute the kernel of the restriction maps of Weil-Chatelet groups for $\\mathcal{L}$-stable pairs. We also prove results about the injectivity of restriction maps of Weil-Chatelet groups for some pairs which are not $\\mathcal{L}$-stable.", "revisions": [ { "version": "v1", "updated": "2020-11-30T03:33:47.000Z" } ], "analyses": { "keywords": [ "rational elliptic surface", "weil-chatelet groups", "restriction maps", "galois cover", "mordell-weil lattices" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }