{ "id": "2011.14426", "version": "v1", "published": "2020-11-29T19:37:29.000Z", "updated": "2020-11-29T19:37:29.000Z", "title": "The maximal number of elements pairwise generating the symmetric group of even degree", "authors": [ "Francesco Fumagalli", "Martino Garonzi", "Attila MarĂ³ti" ], "categories": [ "math.GR", "math.CO" ], "abstract": "Let $G$ be the symmetric group of even degree at least $26$. We compute the maximal size of a subset $S$ of $G$ such that $\\langle x,y \\rangle = G$ whenever $x,y \\in S$ and $x \\neq y$, and we show that it is equal to the covering number of $G$, that is, to the minimal number of proper subgroups of $G$ whose union is $G$.", "revisions": [ { "version": "v1", "updated": "2020-11-29T19:37:29.000Z" } ], "analyses": { "subjects": [ "20B15", "20B30", "20B40", "20D60", "05D40" ], "keywords": [ "symmetric group", "elements pairwise generating", "maximal number", "minimal number", "proper subgroups" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }