{ "id": "2011.13723", "version": "v1", "published": "2020-11-27T13:13:54.000Z", "updated": "2020-11-27T13:13:54.000Z", "title": "An edge CLT for the log determinant of Gaussian ensembles", "authors": [ "Iain M. Johnstone", "Yegor Klochkov", "Alexei Onatski", "Damian Pavlyshyn" ], "comment": "39 pages, 3 figures", "categories": [ "math.PR" ], "abstract": "We derive a Central Limit Theorem (CLT) for $\\log \\left\\vert\\det \\left( M_{N}/\\sqrt{N}-2\\theta_{N}\\right)\\right\\vert,$ where $M_{N}$ is from the Gaussian Unitary or Gaussian Orthogonal Ensemble (GUE and GOE), and $2\\theta_{N}$ is local to the edge of the semicircle law. Precisely, $2\\theta_{N}=2+N^{-2/3}\\sigma_N$ with $\\sigma_N$ being either a constant (possibly negative), or a sequence of positive real numbers, slowly diverging to infinity so that $\\sigma_N \\ll \\log^{2} N$. For slowly growing $\\sigma_N$, our proofs hold for general Gaussian $\\beta$-ensembles. We also extend our CLT to cover spiked GUE and GOE.", "revisions": [ { "version": "v1", "updated": "2020-11-27T13:13:54.000Z" } ], "analyses": { "subjects": [ "60F05", "60B20" ], "keywords": [ "log determinant", "gaussian ensembles", "edge clt", "central limit theorem", "general gaussian" ], "note": { "typesetting": "TeX", "pages": 39, "language": "en", "license": "arXiv", "status": "editable" } } }