{ "id": "2011.11977", "version": "v1", "published": "2020-11-24T09:14:44.000Z", "updated": "2020-11-24T09:14:44.000Z", "title": "Entanglement Entropy Bounds in the Higher Spin XXZ Chain", "authors": [ "Christoph Fischbacher", "Oluwadara Ogunkoya" ], "comment": "27 pages, 4 figures", "categories": [ "math-ph", "math.MP" ], "abstract": "We consider the Heisenberg XXZ spin-$J$ chain ($J\\in\\mathbb{N}/2$) with anisotropy parameter $\\Delta$. Assuming that $\\Delta>2J$, and introducing threshold energies $E_{K}:=K\\left(1-\\frac{2J}{\\Delta}\\right)$, we show that the bipartite entanglement entropy (EE) of states belonging to any spectral subspace with energy less than $E_{K+1}$ satisfy a logarithmically corrected area law with prefactor $(2\\lfloor K/J\\rfloor-2)$. This generalizes previous results by Beaud and Warzel as well as Abdul-Rahman, Stolz and one of the authors, who covered the spin-$1/2$ case.", "revisions": [ { "version": "v1", "updated": "2020-11-24T09:14:44.000Z" } ], "analyses": { "subjects": [ "82B20" ], "keywords": [ "higher spin xxz chain", "entanglement entropy bounds", "bipartite entanglement entropy", "introducing threshold energies", "heisenberg xxz" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable" } } }