{ "id": "2011.11859", "version": "v1", "published": "2020-11-22T07:54:46.000Z", "updated": "2020-11-22T07:54:46.000Z", "title": "Motives with modulus, III: The categories of motives", "authors": [ "Bruno Kahn", "Hiroyasu Miyazaki", "Shuji Saito", "Takao Yamazaki" ], "comment": "60 pages. arXiv admin note: text overlap with arXiv:1511.07124", "categories": [ "math.AG", "math.KT" ], "abstract": "We construct and study a triangulated category of motives with modulus $\\mathbf{MDM}_{\\mathrm{gm}}^{\\mathrm{eff}}$ over a field $k$ that extends Voevodsky's category $\\mathbf{DM}_{\\mathrm{gm}}^{\\mathrm{eff}}$ in such a way as to encompass non-homotopy invariant phenomena. In a similar way as $\\mathbf{DM}_{\\mathrm{gm}}^{\\mathrm{eff}}$ is constructed out of smooth $k$-varieties, $\\mathbf{MDM}_{\\mathrm{gm}}^{\\mathrm{eff}}$ is constructed out of proper modulus pairs, introduced in Part I of this work. To such a modulus pair we associate its motive in $\\mathbf{MDM}_{\\mathrm{gm}}^{\\mathrm{eff}}$. In some cases the $\\mathrm{Hom}$ group in $\\mathbf{MDM}_{\\mathrm{gm}}^{\\mathrm{eff}}$ between the motives of two modulus pairs can be described in terms of Bloch's higher Chow groups.", "revisions": [ { "version": "v1", "updated": "2020-11-22T07:54:46.000Z" } ], "analyses": { "subjects": [ "19E15", "14F42", "19D45", "19F15" ], "keywords": [ "blochs higher chow groups", "encompass non-homotopy invariant phenomena", "proper modulus pairs", "extends voevodskys category", "similar way" ], "note": { "typesetting": "TeX", "pages": 60, "language": "en", "license": "arXiv", "status": "editable" } } }