{ "id": "2011.11623", "version": "v1", "published": "2020-11-23T18:53:08.000Z", "updated": "2020-11-23T18:53:08.000Z", "title": "Left orderability of cyclic branched covers of rational knots $C(2n+1,2m,2)$", "authors": [ "Bradley Meyer", "Anh T. Tran" ], "comment": "16 pages, 5 figures", "categories": [ "math.GT" ], "abstract": "We compute the nonabelian $\\mathrm{SL_2}(\\mathbb{C})$-character varieties of the rational knots $C(2n+1,2m,2)$ in the Conway notation, where $m$ and $n$ are non-zero integers. By studying real points on these varieties, we determine the left orderability of the fundamental groups of the cyclic branched covers of $C(2n+1,2m,2)$.", "revisions": [ { "version": "v1", "updated": "2020-11-23T18:53:08.000Z" } ], "analyses": { "subjects": [ "57M27", "57M25" ], "keywords": [ "cyclic branched covers", "rational knots", "left orderability", "character varieties", "conway notation" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }