{ "id": "2011.11571", "version": "v1", "published": "2020-11-23T17:33:38.000Z", "updated": "2020-11-23T17:33:38.000Z", "title": "Fourier coefficients of restrictions of eigenfunctions", "authors": [ "Emmett L. Wyman", "Yakun Xi", "Steve Zelditch" ], "comment": "32 pages", "categories": [ "math.AP", "math.SP" ], "abstract": "Let $\\{e_j\\}$ be an orthonormal basis of Laplace eigenfunctions of a compact Riemannian manifold $(M,g)$. Let $H \\subset M$ be a submanifold and let $\\{\\psi_k\\}$ be an orthonormal basis of Laplace eigenfunctions of $H$ with the induced metric. We obtain joint asymptotics for the Fourier coefficients \\[ \\langle \\gamma_H e_j, \\psi_k \\rangle_{L^2(H)} = \\int_H e_j \\overline \\psi_k \\, dV_H, \\] of restrictions $\\gamma_H e_j$ of $e_j$ to $H$. In particular, we obtain asymptotics for the sums of the norm-squares of the Fourier coefficients over the joint spectrum $\\{(\\mu_k, \\lambda_j)\\}_{j,k - 0}^{\\infty}$ of the (square roots of the) Laplacian $\\Delta_M$ on $M$ and the Laplacian $\\Delta_H$ on $H$ in a family of suitably `thick' regions in $\\mathbb R^2$. Thick regions include (1) the truncated cone $\\mu_k/\\lambda_j \\in [a,b] \\subset (0,1)$ and $\\lambda_j \\leq \\lambda$, and (2) the slowly thickening strip $|\\mu_k - c\\lambda_j| \\leq w(\\lambda)$ and $\\lambda_j \\leq \\lambda$, where $w(\\lambda)$ is monotonic and $1 \\ll w(\\lambda) \\lesssim \\lambda^{1 - 1/n}$. Key tools for obtaining these asymptotics include the composition calculus of Fourier integral operators and a new multidimensional Tauberian theorem.", "revisions": [ { "version": "v1", "updated": "2020-11-23T17:33:38.000Z" } ], "analyses": { "subjects": [ "35Pxx", "35S30", "58J40" ], "keywords": [ "fourier coefficients", "restrictions", "orthonormal basis", "laplace eigenfunctions", "compact riemannian manifold" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable" } } }