{ "id": "2011.11512", "version": "v1", "published": "2020-11-23T16:21:02.000Z", "updated": "2020-11-23T16:21:02.000Z", "title": "Limiting weak-type behavior for rough bilinear operators", "authors": [ "Moyan Qin", "Huoxiong Wu", "Qingying Xue" ], "comment": "29 pages, 2 figures", "categories": [ "math.CA" ], "abstract": "Let $\\Omega_1,\\Omega_2$ be functions of homogeneous of degree $0$ and $\\vec\\Omega=(\\Omega_1,\\Omega_2)\\in L\\log L(\\mathbb{S}^{n-1})\\times L\\log L(\\mathbb{S}^{n-1})$. In this paper, we investigate the limiting weak-type behavior for bilinear maximal function $M_{\\vec\\Omega}$ and bilinear singular integral $T_{\\vec\\Omega}$ associated with rough kernel $\\vec\\Omega$. For all $f,g\\in L^1(\\mathbb{R}^n)$, we show that $$\\lim_{\\lambda\\to 0^+}\\lambda |\\big\\{ x\\in\\mathbb{R}^n:M_{\\vec\\Omega}(f_1,f_2)(x)>\\lambda\\big\\}|^2 = \\frac{\\|\\Omega_1\\Omega_2\\|_{L^{1/2}(\\mathbb{S}^{n-1})}}{\\omega_{n-1}^2}\\prod\\limits_{i=1}^2\\| f_i\\|_{L^1}$$ and $$\\lim_{\\lambda\\to 0^+}\\lambda|\\big\\{ x\\in\\mathbb{R}^n:| T_{\\vec\\Omega}(f_1,f_2)(x)|>\\lambda\\big\\}|^{2} = \\frac{\\|\\Omega_1\\Omega_2\\|_{L^{1/2}(\\mathbb{S}^{n-1})}}{n^2}\\prod\\limits_{i=1}^2\\| f_i\\|_{L^1}.$$ As consequences, the lower bounds of weak-type norms of $M_{\\vec\\Omega}$ and $T_{\\vec\\Omega}$ are obtained. These results are new even in the linear case. The corresponding results for rough bilinear fractional maximal function and fractional integral operator are also discussed.", "revisions": [ { "version": "v1", "updated": "2020-11-23T16:21:02.000Z" } ], "analyses": { "subjects": [ "42B20", "42B25" ], "keywords": [ "limiting weak-type behavior", "rough bilinear operators", "rough bilinear fractional maximal function", "bilinear maximal function", "fractional integral operator" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }