{ "id": "2011.10638", "version": "v1", "published": "2020-11-20T21:07:58.000Z", "updated": "2020-11-20T21:07:58.000Z", "title": "Convergent subseries of divergent series", "authors": [ "Marek Balcerzak", "Paolo Leonetti" ], "comment": "6 pp; comments are welcome", "categories": [ "math.CA", "math.FA", "math.GN" ], "abstract": "Let $\\mathscr{X}$ be the set of positive real sequences $x=(x_n)$ such that the series $\\sum_n x_n$ is divergent. For each $x \\in \\mathscr{X}$, let $\\mathcal{I}_x$ be the collection of all $A\\subseteq \\mathbf{N}$ such that the subseries $\\sum_{n \\in A}x_n$ is convergent. Moreover, let $\\mathscr{A}$ be the set of sequences $x \\in \\mathscr{X}$ such that $\\lim_n x_n=0$ and $\\mathcal{I}_x\\neq \\mathcal{I}_y$ for all sequences $y=(y_n) \\in \\mathscr{X}$ with $\\liminf_n y_{n+1}/y_n>0$. We show that $\\mathscr{A}$ is comeager and that contains uncountably many sequences $x$ which generate pairwise nonisomorphic ideals $\\mathcal{I}_x$. This answers, in particular, an open question recently posed by M. Filipczak and G. Horbaczewska.", "revisions": [ { "version": "v1", "updated": "2020-11-20T21:07:58.000Z" } ], "analyses": { "subjects": [ "40A05", "54A20" ], "keywords": [ "divergent series", "convergent subseries", "generate pairwise nonisomorphic ideals", "positive real sequences", "open question" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }