{ "id": "2011.10279", "version": "v1", "published": "2020-11-20T08:50:00.000Z", "updated": "2020-11-20T08:50:00.000Z", "title": "Lusin-type properties of convex functions and convex bodies", "authors": [ "Daniel Azagra", "Piotr Hajłasz" ], "comment": "15 pages", "categories": [ "math.CA", "math.DG" ], "abstract": "We prove that if $f:\\mathbb{R}^n\\to\\mathbb{R}$ is convex and $A\\subset\\mathbb{R}^n$ has finite measure, then for any $\\varepsilon>0$ there is a convex function $g:\\mathbb{R}^n\\to\\mathbb{R}$ of class $C^{1,1}$ such that $\\mathcal{L}^n(\\{x\\in A:\\, f(x)\\neq g(x)\\})<\\varepsilon$. As an application we deduce that if $W\\subset\\mathbb{R}^n$ is a compact convex body then, for every $\\varepsilon>0$, there exists a convex body $W_{\\varepsilon}$ of class $C^{1,1}$ such that $\\mathcal{H}^{n-1}\\left(\\partial W\\setminus \\partial W_{\\varepsilon}\\right)< \\varepsilon$. We also show that if $f:\\mathbb{R}^n\\to\\mathbb{R}$ is a convex function and $f$ is not of class $C^{1,1}_{\\rm loc}$, then for any $\\varepsilon>0$ there is a convex function $g:\\mathbb{R}^n\\to\\mathbb{R}$ of class $C^{1,1}_{\\rm loc}$ such that $\\mathcal{L}^n(\\{x\\in \\mathbb{R}^n:\\, f(x)\\neq g(x)\\})<\\varepsilon$ if and only if $f$ is essentially coercive, meaning that $\\lim_{|x|\\to\\infty}f(x)-\\ell(x)=\\infty$ for some linear function $\\ell$. A consequence of this result is that, if $S$ is the boundary of some convex set with nonempty interior (not necessarily bounded) in $\\mathbb{R}^n$ and $S$ does not contain any line, then for every $\\varepsilon>0$ there exists a convex hypersurface $S_{\\varepsilon}$ of class $C^{1,1}_{\\textrm{loc}}$ such that $\\mathcal{H}^{n-1}(S\\setminus S_{\\varepsilon})<\\varepsilon$.", "revisions": [ { "version": "v1", "updated": "2020-11-20T08:50:00.000Z" } ], "analyses": { "subjects": [ "26B25", "28A75", "41A30", "52A20", "52A27", "53C45" ], "keywords": [ "convex function", "lusin-type properties", "compact convex body", "finite measure", "linear function" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }