{ "id": "2011.10261", "version": "v1", "published": "2020-11-20T08:14:40.000Z", "updated": "2020-11-20T08:14:40.000Z", "title": "Dominating and pinning down pairs for topological spaces", "authors": [ "István Juhász", "Lajos Soukup", "Zoltán Szentmiklóssy" ], "comment": "16 pages", "categories": [ "math.GN", "math.LO" ], "abstract": "We call a pair of infinite cardinals $(\\kappa,\\lambda)$ with $\\kappa > \\lambda$ a dominating (resp. pinning down) pair for a topological space $X$ if for every subset $A$ of $X$ (resp. family $\\mathcal{U}$ of non-empty open sets in $X$) of cardinality $\\le \\kappa$ there is $B \\subset X$ of cardinality $\\le \\lambda$ such that $A \\subset \\overline{B}$ (resp. $B \\cap U \\ne \\emptyset$ for each $U \\in \\mathcal{U}$). Clearly, a dominating pair is also a pinning down pair for $X$. Our definitions generalize the concepts introduced in [GTW] resp. [BT] which focused on pairs of the form $(2^\\lambda,\\lambda)$. The main aim of this paper is to answer a large number of the numerous problems from [GTW] and [BT] that asked if certain conditions on a space $X$ together with the assumption that $(2^\\lambda,\\lambda)$ or $((2^\\lambda)^+,\\lambda)$ is a pinning down pair or \\dominating pair for $X$ would imply $d(X) \\le \\lambda$. [BT] A. Bella, V.V. Tkachuk, Exponential density vs exponential domination, preprint [GTW] G. Gruenhage, V.V. Tkachuk, R.G. Wilson, Domination by small sets versus density, Topology and its Applications 282 (2020)", "revisions": [ { "version": "v1", "updated": "2020-11-20T08:14:40.000Z" } ], "analyses": { "subjects": [ "54A25", "54A35", "54A65", "03E35" ], "keywords": [ "topological space", "dominating", "non-empty open sets", "exponential domination", "exponential density" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }