{ "id": "2011.10181", "version": "v1", "published": "2020-11-20T02:37:40.000Z", "updated": "2020-11-20T02:37:40.000Z", "title": "Rational curves on K3 surfaces of small genus", "authors": [ "Rijul Saini" ], "comment": "53 pages", "categories": [ "math.AG" ], "abstract": "Let $\\mathfrak B_g$ denote the moduli space of primitively polarized $K3$ surfaces $(S,H)$ of genus $g$ over $\\mathbb C$. It is well-known that $\\mathfrak B_g$ is irreducible and that there are only finitely many rational curves in $|H|$ for any primitively polarized $K3$ surface $(S,H)$. So we can ask the question of finding the monodromy group of such curves. The case of $g=2$ essentially follows from the results of Harris \\cite{Ha} to be the full symmetric group $S_{324}$, here we solve the case $g=3$ and $4$.", "revisions": [ { "version": "v1", "updated": "2020-11-20T02:37:40.000Z" } ], "analyses": { "subjects": [ "14J28", "20B25", "14H45" ], "keywords": [ "rational curves", "k3 surfaces", "small genus", "full symmetric group", "moduli space" ], "note": { "typesetting": "TeX", "pages": 53, "language": "en", "license": "arXiv", "status": "editable" } } }