{ "id": "2011.10169", "version": "v1", "published": "2020-11-20T01:45:55.000Z", "updated": "2020-11-20T01:45:55.000Z", "title": "Alternative Theorem of Navier-Stokes Equations in $\\mathbb{R}^3$", "authors": [ "Yongqian Han" ], "categories": [ "math.AP" ], "abstract": "We consider Cauchy problem of the incompressible Navier-Stokes equations with initial data $u_0\\in L^1(\\mathbb{R}^3)\\cap L^{\\infty}(\\mathbb{R}^3)$. There exist a maximum time interval $[0,T_{max})$ and a unique solution $u\\in C\\big([0,T_{max}); L^2(\\mathbb{R}^3) \\cap L^p(\\mathbb{R}^3)\\big)$ ($\\forall p>3$). We find one of function class $S_{regular}$ defined by scaling invariant norm pair such that $T_{max}=\\infty$ provided $u_0\\in S_{regular}$. Especially, $\\|u_0\\|_{L^p}$ is arbitrarily large for any $u_0\\in S_{regular}$ and $p>3$. On the other hand, the alternative theorem is proved. It is that either $T_{max}= \\infty$ or $T_{max}\\in(T_l,T_r]$. Especially, $T_r