{ "id": "2011.10160", "version": "v1", "published": "2020-11-20T00:42:39.000Z", "updated": "2020-11-20T00:42:39.000Z", "title": "Sharp convergence for sequences of nonelliptic Schrödinger means", "authors": [ "Wenjuan Li", "Huiju Wang", "Dunyan Yan" ], "categories": [ "math.CA", "math.AP" ], "abstract": "We consider pointwise convergence of nonelliptic Schr\\\"{o}dinger means $e^{it_{n}\\square}f(x)$ for $f \\in H^{s}(\\mathbb{R}^{2})$ and decreasing sequences $\\{t_{n}\\}_{n=1}^{\\infty}$ converging to zero, where \\[{e^{it_{n}\\square }}f\\left( x \\right): = \\int_{{\\mathbb{R}^2}} {{e^{i\\left( {x \\cdot \\xi + t_{n}{{ \\xi_{1}\\xi_{2} }}} \\right)}}\\widehat{f}} \\left( \\xi \\right)d\\xi .\\] We prove that when $0