{ "id": "2011.09411", "version": "v1", "published": "2020-11-18T17:14:45.000Z", "updated": "2020-11-18T17:14:45.000Z", "title": "Sign intermixing for Riesz bases and frames measured in the Kantorovich-Rubinstein norm", "authors": [ "Nikolai Nikolski", "Alexander Volberg" ], "comment": "16 pages", "categories": [ "math.CA" ], "abstract": "We measure a sign interlacing phenomenon for Bessel sequences $ (u_{k})$ in $ L^{2}$ spaces in terms of the Kantorovich--Rubinstein mass moving norm $ \\Vert u_{k}\\Vert _{KR}$. Our main observation shows that, quantitatively, the rate of the decreasing $ \\Vert u_{k}\\Vert _{KR}\\longrightarrow 0$ havily depends on S. Bernstein $ n$-widths of a compact of Lipschitz functions. In particular, it depends on the dimension of the measure space.", "revisions": [ { "version": "v1", "updated": "2020-11-18T17:14:45.000Z" } ], "analyses": { "subjects": [ "42B35", "F.2.2" ], "keywords": [ "riesz bases", "kantorovich-rubinstein norm", "sign intermixing", "kantorovich-rubinstein mass moving norm", "sign interlacing phenomenon" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }