{ "id": "2011.09163", "version": "v1", "published": "2020-11-18T09:14:12.000Z", "updated": "2020-11-18T09:14:12.000Z", "title": "$(G,μ)$-Windows and Deformations of $(G,μ)$-Displays", "authors": [ "Oliver Bueltel", "Mohammad Hadi Hedayatzadeh" ], "categories": [ "math.NT", "math.AG" ], "abstract": "Let $k_0$ be a finite field of characteristic $p$, let $G$ be a smooth affine group scheme over $\\mathbb{Z}_p$, and let $\\mu$ be a cocharacter of $G_{W(k_0)}$ such that the set of $\\mu$-weights of $\\text{Lie}\\, G$ is a subset of $\\{-1,0,1,2,\\dots\\}$. We prove that the groupoid of adjoint nilpotent $(G,\\mu)$-displays is equivalent to the groupoid of $(G,\\mu)$-windows, which are the generalizations of windows.", "revisions": [ { "version": "v1", "updated": "2020-11-18T09:14:12.000Z" } ], "analyses": { "keywords": [ "deformations", "smooth affine group scheme", "finite field", "adjoint nilpotent", "characteristic" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }