{ "id": "2011.08732", "version": "v1", "published": "2020-11-17T16:10:11.000Z", "updated": "2020-11-17T16:10:11.000Z", "title": "On Artin's Conjecture: Pairs of Additive Forms", "authors": [ "Miriam Sophie Kaesberg" ], "categories": [ "math.NT" ], "abstract": "It is established that for every pair of additive forms $f=\\sum_{i=1}^s a_i x_i^k, g=\\sum_{i=1}^s b_i x_i^k$ of degree $k$ in $s>2k^2$ variables the equations $f=g=0$ have a non-trivial $p$-adic solution for all odd primes $p$.", "revisions": [ { "version": "v1", "updated": "2020-11-17T16:10:11.000Z" } ], "analyses": { "subjects": [ "11D88", "11D72" ], "keywords": [ "additive forms", "artins conjecture", "adic solution", "odd primes" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }