{ "id": "2011.08093", "version": "v1", "published": "2020-11-16T16:49:04.000Z", "updated": "2020-11-16T16:49:04.000Z", "title": "A Plücker coordinate mirror for type A flag varieties", "authors": [ "Elana Kalashnikov" ], "categories": [ "math.AG" ], "abstract": "We introduce a superpotential for partial flag varieties of type $A$. This is a map $W: Y^\\circ \\to \\mathbb{C}$, where $Y^\\circ$ is the complement of an anticanonical divisor on a product of Grassmannians. The map $W$ is expressed in terms of Pl\\\"ucker coordinates of the Grassmannian factors. This construction generalizes the Marsh--Rietsch Pl\\\"ucker coordinate mirror for Grassmannians. We show that in a distinguished cluster chart for $Y$, our superpotential agrees with earlier mirrors constructed by Eguchi--Hori--Xiong and Batyrev--Ciocan-Fontanine--Kim--van Straten. Our main tool is quantum Schubert calculus on the flag variety.", "revisions": [ { "version": "v1", "updated": "2020-11-16T16:49:04.000Z" } ], "analyses": { "subjects": [ "14J33", "14N35" ], "keywords": [ "plücker coordinate mirror", "flag variety", "quantum schubert calculus", "partial flag varieties", "main tool" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }