{ "id": "2011.07408", "version": "v1", "published": "2020-11-14T22:55:23.000Z", "updated": "2020-11-14T22:55:23.000Z", "title": "Separating invariants over finite fields", "authors": [ "Gregor Kemper", "Artem Lopatin", "Fabian Reimers" ], "comment": "18 pages", "categories": [ "math.RT", "math.AC" ], "abstract": "We determine the minimal number of separating invariants for the invariant ring of a matrix group $G < \\mathrm{GL}_n(\\mathbb{F}_q)$ over the finite field $\\mathbb{F}_q$. We show that this minimal number can be obtained with invariants of degree at most $|G|n(q-1)$. In the non-modular case this construction can be improved to give invariants of degree at most $n(q-1)$. As examples we study separating invariants over the field $\\mathbb{F}_2$ for two important representations of the symmetric group", "revisions": [ { "version": "v1", "updated": "2020-11-14T22:55:23.000Z" } ], "analyses": { "subjects": [ "13A50", "16R30", "20B30" ], "keywords": [ "finite field", "minimal number", "study separating invariants", "matrix group", "symmetric group" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }