{ "id": "2011.05835", "version": "v1", "published": "2020-11-11T14:59:27.000Z", "updated": "2020-11-11T14:59:27.000Z", "title": "$k-$smoothness on polyhedral Banach spaces", "authors": [ "Subhrajit Dey", "Arpita Mal", "Kallol Paul" ], "comment": "11 pages", "categories": [ "math.FA" ], "abstract": "We characterize $k-$smoothness of an element on the unit sphere of a finite-dimensional polyhedral Banach space. Then we study $k-$smoothness of an operator $T \\in \\mathbb{L}(\\ell_{\\infty}^n,\\mathbb{Y}),$ where $\\mathbb{Y}$ is a two-dimensional Banach space with the additional condition that $T$ attains norm at each extreme point of $B_{\\ell_{\\infty}^{n}}.$ We also characterize $k-$smoothness of an operator defined between $\\ell_{\\infty}^3$ and $\\ell_{1}^3.$", "revisions": [ { "version": "v1", "updated": "2020-11-11T14:59:27.000Z" } ], "analyses": { "subjects": [ "46B20", "47L05" ], "keywords": [ "smoothness", "finite-dimensional polyhedral banach space", "two-dimensional banach space", "unit sphere", "additional condition" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }