{ "id": "2011.03777", "version": "v1", "published": "2020-11-07T13:49:44.000Z", "updated": "2020-11-07T13:49:44.000Z", "title": "Ideals generated by families of sequences of natural numbers", "authors": [ "Pratulananda Das", "Szymon Głcab", "Rafał Filipów", "Jacek Tryba" ], "categories": [ "math.GN", "math.LO" ], "abstract": "We consider ideals on $\\omega\\times\\omega$ generated by subsets of $\\omega^\\omega$. Namely, for $\\mathcal{F}\\subset \\omega^\\omega$ we define $$\\mathcal{I}(\\mathcal{F})=\\{A\\subset \\omega\\times\\omega:\\exists f\\in \\mathcal{F}\\,\\forall^\\infty n\\in\\omega\\, (|\\{k:(n,k)\\in A\\}|\\leq f(n))\\}.$$ These ideals encompass other well known ideals e.g.~$fin\\times fin$ and $ED$. We examine some properties of these ideals including topological complexity and cardinal characteristics associated with them.", "revisions": [ { "version": "v1", "updated": "2020-11-07T13:49:44.000Z" } ], "analyses": { "keywords": [ "natural numbers", "cardinal characteristics", "ideals encompass", "properties" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }