{ "id": "2011.02762", "version": "v1", "published": "2020-11-05T11:21:02.000Z", "updated": "2020-11-05T11:21:02.000Z", "title": "Proof of a supercongruence conjecture of (F.3) of Swisher using the WZ-method", "authors": [ "Arijit Jana", "Gautam Kalita" ], "comment": "8 pages", "categories": [ "math.NT" ], "abstract": "For a non-negative integer $m$, let $S(m)$ denote the sum given by $$S(m):=\\sum_{n=0}^{m}\\frac{(-1)^n(8n+1)}{n!^3}\\left(\\frac{1}{4}\\right)_n^3.$$ Using the powerful WZ-method, for a prime $p\\equiv 3$ $($mod $4)$ and an odd integer $r>1$, we here deduce a supercongruence relation for $S\\left(\\frac{p^r-3}{4}\\right)$ in terms of values of $p$-adic gamma function. As a consequence, we prove one of the supercongruence conjectures of (F.3) posed by Swisher. This is the first attempt to prove supercongruences for a sum truncated at $\\frac{p^r-(d-1)}{d}$ when $p^r\\equiv -1$ $($mod $d)$.", "revisions": [ { "version": "v1", "updated": "2020-11-05T11:21:02.000Z" } ], "analyses": { "subjects": [ "11Y55", "11A07", "11B65", "40G99" ], "keywords": [ "supercongruence conjecture", "adic gamma function", "first attempt", "odd integer", "supercongruence relation" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }