{ "id": "2011.02756", "version": "v1", "published": "2020-11-05T10:57:11.000Z", "updated": "2020-11-05T10:57:11.000Z", "title": "Invariant escaping Fatou components with two rank 1 limit functions for automorphisms of $\\mathbb{C}^2$", "authors": [ "Anna Miriam Benini", "Alberto Saracco", "Michela Zedda" ], "comment": "16 pages", "categories": [ "math.DS", "math.CV" ], "abstract": "We construct automorphisms of $\\mathbb{C}^2$, and more precisely transcendental H\\'enon maps, with an invariant escaping Fatou component which has exactly two distinct limit functions, both of (generic) rank 1. We also prove a general growth lemma for the norm of points in orbits belonging to invariant escaping Fatou components for automorphisms of the form $F(z,w)=(g(z,w),z)$ with $g(z,w):\\mathbb{C}^2\\rightarrow\\mathbb{C}$ holomorphic.", "revisions": [ { "version": "v1", "updated": "2020-11-05T10:57:11.000Z" } ], "analyses": { "subjects": [ "37F80", "32H50", "37F10" ], "keywords": [ "invariant escaping fatou component", "automorphisms", "general growth lemma", "precisely transcendental henon maps", "distinct limit functions" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }