{ "id": "2011.02040", "version": "v1", "published": "2020-11-03T22:26:18.000Z", "updated": "2020-11-03T22:26:18.000Z", "title": "(Extended) Kronecker quivers and amenability", "authors": [ "Sebastian Eckert" ], "comment": "13 pages", "categories": [ "math.RT" ], "abstract": "We apply the notion of hyperfinite families of modules to the wild path algebras of extended Kronecker quivers $k\\Theta(d)$. While the preprojective and postinjective component are hyperfinite, we show the existence of a family of non-hyperfinite modules in the regular component for some $d$. Making use of dimension expanders to achieve this, our construction is more explicit than previous results.", "revisions": [ { "version": "v1", "updated": "2020-11-03T22:26:18.000Z" } ], "analyses": { "subjects": [ "16G20", "16G60" ], "keywords": [ "amenability", "wild path algebras", "hyperfinite families", "regular component", "extended kronecker quivers" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }