{ "id": "2011.00919", "version": "v1", "published": "2020-11-02T12:01:09.000Z", "updated": "2020-11-02T12:01:09.000Z", "title": "Long-time asymptotic behavior of a mixed schrödinger equation with weighted Sobolev initial data", "authors": [ "Qiaoyuan Cheng", "Yiling Yang", "Engui Fan" ], "comment": "35 pages", "categories": [ "math.AP", "nlin.SI" ], "abstract": "We apply $\\bar{\\partial}$ steepest descent method to obtain sharp asymptotics for a mixed schr\\\"{o}dinger equation $$ q_t+iq_{xx}-ia (\\vert q \\vert^2q)_x -2b^2\\vert q \\vert^2q=0,$$ $$q(x,t=0)=q_0(x),$$ under essentially minimal regularity assumptions on initial data in a weighted Sobolev space $q_0(x) \\in H^{2,2}(\\mathbb{R})$. In the asymptotic expression, the leading order term $\\mathcal{O}(t^{-1/2})$ comes from dispersive part $q_t+iq_{xx}$ and the error order $\\mathcal{O}(t^{-3/4})$ from a $\\overline\\partial$ equation", "revisions": [ { "version": "v1", "updated": "2020-11-02T12:01:09.000Z" } ], "analyses": { "keywords": [ "weighted sobolev initial data", "long-time asymptotic behavior", "mixed schrödinger equation", "steepest descent method", "essentially minimal regularity assumptions" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable" } } }