{ "id": "2011.00599", "version": "v1", "published": "2020-11-01T18:56:45.000Z", "updated": "2020-11-01T18:56:45.000Z", "title": "On large time behavior of solutions of higher order evolution inequalities with fast diffusion", "authors": [ "A. A. Kon'kov", "A. E. Shishkov" ], "categories": [ "math.AP" ], "abstract": "We obtain stabilization conditions and large time estimates for weak solutions of the inequality $$ \\sum_{|\\alpha| = m} \\partial^\\alpha a_\\alpha (x, t, u) - u_t \\ge f (x, t) g (u) \\quad \\mbox{in } \\Omega \\times (0, \\infty), $$ where $\\Omega$ is a non-empty open subset of ${\\mathbb R}^n$, $m, n \\ge 1$, and $a_\\alpha$ are Caratheodory functions such that $$ |a_\\alpha (x, t, \\zeta)| \\le A \\zeta^p, \\quad |\\alpha| = m, $$ with some constants $A > 0$ and $0 < p < 1$ for almost all $(x, t) \\in \\Omega \\times (0, \\infty)$ and for all $\\zeta \\in [0, \\infty)$. For solutions of homogeneous differential inequalities, we give an exact universal upper bound.", "revisions": [ { "version": "v1", "updated": "2020-11-01T18:56:45.000Z" } ], "analyses": { "subjects": [ "35B40", "35G20", "35K25", "35K55", "35K65" ], "keywords": [ "higher order evolution inequalities", "large time behavior", "fast diffusion", "inequality", "exact universal upper bound" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }