{ "id": "2010.15024", "version": "v1", "published": "2020-10-28T14:59:33.000Z", "updated": "2020-10-28T14:59:33.000Z", "title": "A note on decreasing rearrangement and mean oscillation on measure spaces", "authors": [ "Almut Burchard", "Galia Dafni", "Ryan Gibara" ], "categories": [ "math.FA" ], "abstract": "We derive bounds on the mean oscillation of the decreasing rearrangement $f^*$ on $\\mathbb{R}_+$ in terms of the mean oscillation of $f$ on a suitable measure space $X$. In the special case of a doubling metric measure space, the bound depends only on the doubling constant.", "revisions": [ { "version": "v1", "updated": "2020-10-28T14:59:33.000Z" } ], "analyses": { "subjects": [ "30L15", "42B35", "46E30" ], "keywords": [ "mean oscillation", "decreasing rearrangement", "doubling metric measure space", "suitable measure space", "special case" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }