{ "id": "2010.14724", "version": "v1", "published": "2020-10-28T03:12:40.000Z", "updated": "2020-10-28T03:12:40.000Z", "title": "Spectrality of generalized Sierpinski-type self-affine measures", "authors": [ "Jing-Cheng Liu", "Ying Zhang", "Zhi-Yong Wang", "Ming-Liang Chen" ], "categories": [ "math.CA", "math.FA" ], "abstract": "For an expanding integer matrix $M\\in M_2(\\mathbb{Z})$ and an integer digit set $D=\\{(0,0)^t,(\\alpha_1,\\alpha_2)^t,(\\beta_1,\\beta_2)^t\\}$ with $\\alpha_1\\beta_2-\\alpha_2\\beta_1\\neq0$, let $\\mu_{M,D}$ be the Sierpinski-type self-affine measure defined by $\\mu_{M,D}(\\cdot)=\\frac{1}{3}\\sum_{d\\in D}\\mu_{M,D}(M(\\cdot)-d)$. In [5.36], the authors separately investigated the spectral property of the measure $\\mu_{M,D}$ in the case of $\\det(M)\\notin 3\\mathbb{Z}$ or $\\alpha_1\\beta_2-\\alpha_2\\beta_1\\notin 3\\mathbb{Z}$. In this paper, we consider the remaining case where $\\det(M)\\in 3\\mathbb{Z}$ and $\\alpha_1\\beta_2-\\alpha_2\\beta_1\\in 3\\mathbb{Z}$, and give the necessary and sufficient conditions for $\\mu_{M,D}$ to be a spectral measure. This completely settles the spectrality of the Sierpinski-type self-affine measure $\\mu_{M,D}$.", "revisions": [ { "version": "v1", "updated": "2020-10-28T03:12:40.000Z" } ], "analyses": { "keywords": [ "generalized sierpinski-type self-affine measures", "spectrality", "integer digit set", "expanding integer matrix", "spectral property" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }