{ "id": "2010.14349", "version": "v1", "published": "2020-10-27T15:04:45.000Z", "updated": "2020-10-27T15:04:45.000Z", "title": "Star edge-coloring of some special graphs", "authors": [ "Xuling Hou", "Lingxi Li", "Tao Wang" ], "comment": "13 pages", "categories": [ "math.CO", "cs.DM" ], "abstract": "The star chromatic index of a multigraph $G$, denoted by $\\chi_{\\mathrm{star}}'(G)$, is the minimum number of colors needed to properly color the edges of $G$ such that no path or cycle of length $4$ is bicolored. In this paper, we study the star edge-coloring of Halin graphs, $k$-power graphs and the generalized Petersen graphs $P(3n, n)$.", "revisions": [ { "version": "v1", "updated": "2020-10-27T15:04:45.000Z" } ], "analyses": { "subjects": [ "05C15" ], "keywords": [ "special graphs", "star edge-coloring", "star chromatic index", "generalized petersen graphs", "power graphs" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }