{ "id": "2010.14180", "version": "v1", "published": "2020-10-27T10:31:03.000Z", "updated": "2020-10-27T10:31:03.000Z", "title": "A note on the partial data inverse problem for a nonlinear magnetic Schrödinger operator on Riemann surface", "authors": [ "Yilin Ma" ], "comment": "7 pages", "categories": [ "math.AP" ], "abstract": "We recover a nonlinear magnetic Schr\\\"odinger potential from measurement on an arbitrarily small open subset of the boundary on a compact Riemann surface. We assume that the magnetic potential satisfies suitable analytic properties, in which case the recovery can be obtained by a linearisation argument. The proof relies on the complex analytic methods introduced in [15].", "revisions": [ { "version": "v1", "updated": "2020-10-27T10:31:03.000Z" } ], "analyses": { "subjects": [ "35R30" ], "keywords": [ "nonlinear magnetic schrödinger operator", "partial data inverse problem", "riemann surface", "satisfies suitable analytic properties", "potential satisfies suitable analytic" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }