{ "id": "2010.14079", "version": "v1", "published": "2020-10-27T05:44:26.000Z", "updated": "2020-10-27T05:44:26.000Z", "title": "Two Approximation Results for Divergence Free Vector Fields", "authors": [ "Jesse Goodman", "Felipe Hernandez", "Daniel Spector" ], "comment": "11 pages", "categories": [ "math.AP", "math.FA" ], "abstract": "In this paper we prove two approximation results for divergence free vector fields. The first is a form of an assertion of J. Bourgain and H. Brezis concerning the approximation of solenoidal charges in the strict topology: Given $F \\in M_b(\\mathbb{R}^d;\\mathbb{R}^d)$ such that $\\operatorname*{div} F=0$ in the sense of distributions, there exist $C^1$ closed curves $\\{\\Gamma_{i,l}\\}_{\\{1,\\ldots,n_l\\}\\times \\mathbb{N}}$, with parameterization by arclength $\\gamma_{i,l} \\in C^1([0,L_{i,l}];\\mathbb{R}^d)$, $l \\leq L_{i,l} \\leq 2l$, for which \\[ F= \\lim_{l \\to \\infty} \\frac{\\|F\\|_{M_b(\\mathbb{R}^d;\\mathbb{R}^d)}}{n_l \\cdot l} \\sum_{i=1}^{n_l} \\dot{\\gamma}_{i,l} \\left.\\mathcal{H}^1\\right\\vert_{\\Gamma_{i,l}} \\] weakly-star as measures and \\begin{align*} \\lim_{l \\to \\infty} \\frac{1}{n_l \\cdot l} \\sum_{i=1}^{n_l} |\\Gamma_{i,l}| = 1. \\end{align*} The second, which is an almost immediate consequence of the first, is that smooth compactly supported functions are dense in \\[ \\left\\{ F \\in M_b(\\mathbb{R}^d;\\mathbb{R}^d): \\operatorname*{div}F=0 \\right\\} \\] with respect to the strict topology.", "revisions": [ { "version": "v1", "updated": "2020-10-27T05:44:26.000Z" } ], "analyses": { "keywords": [ "divergence free vector fields", "approximation results", "strict topology", "immediate consequence", "smooth compactly supported functions" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }