{ "id": "2010.13996", "version": "v1", "published": "2020-10-27T02:14:06.000Z", "updated": "2020-10-27T02:14:06.000Z", "title": "Lengths of maximal green sequences for tame path algebras", "authors": [ "Ryoichi Kase", "Ken Nakashima" ], "comment": "67 pages", "categories": [ "math.RT", "math.CO" ], "abstract": "In this paper, we study the maximal length of maximal green sequences for quivers of type $\\widetilde{\\mathbf{D}}$ and $\\widetilde{\\mathbf{E}}$ by using the theory of tilting mutation. We show that the maximal length does not depend on the choice of the orientation, and determine it explicitly. Moreover, we give a program which counts all maximal green sequences by length for a given Dynkin/extended Dynkin quiver.", "revisions": [ { "version": "v1", "updated": "2020-10-27T02:14:06.000Z" } ], "analyses": { "subjects": [ "16G20", "06-08", "16G60" ], "keywords": [ "maximal green sequences", "tame path algebras", "maximal length", "dynkin/extended dynkin quiver", "orientation" ], "note": { "typesetting": "TeX", "pages": 67, "language": "en", "license": "arXiv", "status": "editable" } } }