{ "id": "2010.13895", "version": "v1", "published": "2020-10-26T21:04:11.000Z", "updated": "2020-10-26T21:04:11.000Z", "title": "Rough pseudodifferential operators on Hardy spaces for Fourier integral operators", "authors": [ "Jan Rozendaal" ], "comment": "23 pages", "categories": [ "math.AP", "math.CA" ], "abstract": "We prove mapping properties of pseudodifferential operators with rough symbols on Hardy spaces for Fourier integral operators. The symbols $a(x,\\eta)$ are elements of $C^{r}_{*}S^{m}_{1,\\delta}$ classes that have limited regularity in the $x$ variable. We show that the associated pseudodifferential operator $a(x,D)$ maps between Sobolev spaces $\\mathcal{H}^{p,s}_{FIO}(\\mathbb{R}^{n})$ and $\\mathcal{H}^{p,t}_{FIO}(\\mathbb{R}^{n})$ over the Hardy space for Fourier integral operators $\\mathcal{H}^{p}_{FIO}(\\mathbb{R}^{n})$. Our main result implies that for $m=0$, $\\delta=1/2$ and $r>n-1$, $a(x,D)$ acts boundedly on $\\mathcal{H}^{p}_{FIO}(\\mathbb{R}^{n})$.", "revisions": [ { "version": "v1", "updated": "2020-10-26T21:04:11.000Z" } ], "analyses": { "subjects": [ "35S05", "42B35", "35S30", "35S50" ], "keywords": [ "fourier integral operators", "hardy space", "rough pseudodifferential operators", "main result implies", "sobolev spaces" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }