{ "id": "2010.13876", "version": "v1", "published": "2020-10-26T19:57:44.000Z", "updated": "2020-10-26T19:57:44.000Z", "title": "Another almost zero-dimensional space of exact multiplicative class 3", "authors": [ "David S. Lipham" ], "comment": "5 pages", "categories": [ "math.GN", "math.CV" ], "abstract": "We show that the escaping set for $f(z)=\\exp(z)-1$ is nowhere $\\sigma$-complete. This establishes that the escaping endpoint set $\\dot E(f)$ is a first category almost zero-dimensional space which is $F_{\\sigma\\delta}$ and nowhere $G_{\\delta \\sigma}$. Only two other elementary spaces with those properties are known: $\\mathbb Q ^\\omega$ and Erd\\H{o}s space $\\mathfrak E$. Previous work has shown that $\\dot E(f)$ is homeomorphic to neither of those.", "revisions": [ { "version": "v1", "updated": "2020-10-26T19:57:44.000Z" } ], "analyses": { "subjects": [ "54F45", "54H05", "30D05" ], "keywords": [ "exact multiplicative class", "zero-dimensional space", "escaping endpoint set", "first category", "elementary spaces" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }