{ "id": "2010.13295", "version": "v1", "published": "2020-10-26T02:52:30.000Z", "updated": "2020-10-26T02:52:30.000Z", "title": "Polynomial Invariants of Singular Knots and links", "authors": [ "Jose Ceniceros", "Indu R. Churchill", "Mohamed Elhamdadi" ], "comment": "12 pages. Comments are welcome", "categories": [ "math.GT", "math.QA" ], "abstract": "We generalize the notion of the quandle polynomial to the case of singquandles. We show that the singquandle polynomial is an invariant of finite singquandles. We also construct a singular link invariant from the singquandle polynomial and show that this new singular link invariant generalizes the singquandle counting invariant. In particular, using the new polynomial invariant, we can distinguish singular links with the same singquandle counting invariant.", "revisions": [ { "version": "v1", "updated": "2020-10-26T02:52:30.000Z" } ], "analyses": { "subjects": [ "57K12" ], "keywords": [ "polynomial invariant", "singular knots", "singquandle counting invariant", "singquandle polynomial", "singular link invariant generalizes" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }