{ "id": "2010.13131", "version": "v1", "published": "2020-10-25T15:04:47.000Z", "updated": "2020-10-25T15:04:47.000Z", "title": "Hölder continuity for the solutions of the p(x)-Laplace equation with general right-hand side", "authors": [ "A. Lyaghfouri" ], "categories": [ "math.AP" ], "abstract": "We show that bounded solutions of the quasilinear elliptic equation $\\Delta_{p(x)} u=g+div(\\textbf{F})$ are locally H\\\"{o}lder continuous provided that the functions $g$ and $\\textbf{F}$ are in suitable Lebesgue spaces.", "revisions": [ { "version": "v1", "updated": "2020-10-25T15:04:47.000Z" } ], "analyses": { "subjects": [ "35B65", "35J92" ], "keywords": [ "general right-hand side", "hölder continuity", "quasilinear elliptic equation", "suitable lebesgue spaces", "bounded solutions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }