{ "id": "2010.12750", "version": "v1", "published": "2020-10-24T02:59:58.000Z", "updated": "2020-10-24T02:59:58.000Z", "title": "Refinements of norm and numerical radius inequalities", "authors": [ "Pintu Bhunia", "Kallol Paul" ], "categories": [ "math.FA" ], "abstract": "Several refinements of norm and numerical radius inequalities of bounded linear operators on a complex Hilbert space are given. In particular, we show that if $A$ is a bounded linear operator on a complex Hilbert space, then $$ \\frac{1}{4}\\|A^*A+AA^*\\| \\leq \\frac{1}{8}\\bigg( \\|A+A^*\\|^2+\\|A-A^*\\|^2 +c^2(A+A^*)+c^2(A-A^*)\\bigg) \\leq w^2(A)$$ and \\begin{eqnarray*} \\frac{1}{2}\\|A^*A+AA^*\\| - \\frac{1}{4}\\bigg\\|(A+A^*)^2 (A-A^*)^2 \\bigg\\|^{1/2} \\leq w^2(A) \\leq \\frac{1}{2}\\|A^*A+AA^*\\|, \\end{eqnarray*} %$$ \\frac{1}{4}\\|A^*A+AA^*\\| \\leq \\frac{1}{2}w^2(A) + \\frac{1}{8}\\bigg\\|(A+A^*)^2 (A-A^*)^2 \\bigg\\|^{1/2}\\leq w^2(A),$$ where $\\|.\\|$, $w(.)$ and $c(.)$ are the operator norm, the numerical radius and the Crawford number, respectively. Further, we prove that if $A,D$ are bounded linear operators on a complex Hilbert space, then \\begin{eqnarray*} \\|AD^*\\| \\leq \\left\\| \\int_0^1 \\left( (1-t) \\left(\\frac{ |A|^2+|D|^2}{2}\\right) +t\\|AD^*\\|I \\right)^2dt \\right\\|^{1/2} \\leq \\frac{1}{2}\\left\\| |A|^2+|D|^2 \\right\\|, \\end{eqnarray*} where $|A|=(A^*A)^{1/2}$ and $|D|=(D^*D)^{1/2}$. This is a refinement of well known inequality obtained by Bhatia and Kittaneh.", "revisions": [ { "version": "v1", "updated": "2020-10-24T02:59:58.000Z" } ], "analyses": { "subjects": [ "47A12", "47A30" ], "keywords": [ "numerical radius inequalities", "inequality", "complex hilbert space", "bounded linear operator", "refinement" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }