{ "id": "2010.11556", "version": "v1", "published": "2020-10-22T09:29:23.000Z", "updated": "2020-10-22T09:29:23.000Z", "title": "Dimension of Images of Large Level Sets", "authors": [ "Anthony G. O'Farrell", "Gavin Armstrong" ], "comment": "11 pages, 3 figures", "categories": [ "math.CA" ], "abstract": "Let $k$ be a natural number. We consider $k$-times continuously-differentiable real-valued functions $f:E\\to\\mathbb{R}$, where $E$ is some interval on the line having positive length. For $0<\\alpha<1$ let $I_\\alpha(f)$ denote the set of values $y\\in\\mathbb{R}$ whose preimage $f^{-1}(y)$ has Hausdorff dimension $\\dim f^{-1}(y) \\ge \\alpha$. We consider how large can be the Hausdorff dimension of $I_\\alpha(f)$, as $f$ ranges over the set $C^k(E,\\mathbb{R})$ of all $k$-times continuously-differentiable functions from $E$ into $\\mathbb{R}$. We show that the sharp upper bound on $\\dim I_\\alpha(f)$ is $\\displaystyle\\frac{1-\\alpha}k$.", "revisions": [ { "version": "v1", "updated": "2020-10-22T09:29:23.000Z" } ], "analyses": { "subjects": [ "26A06", "26A18", "28A78", "37E05", "28A80" ], "keywords": [ "large level sets", "hausdorff dimension", "sharp upper bound", "natural number", "times continuously-differentiable functions" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }