{ "id": "2010.09615", "version": "v1", "published": "2020-10-19T15:56:11.000Z", "updated": "2020-10-19T15:56:11.000Z", "title": "An upper bound on the topological complexity of discriminantal varieties", "authors": [ "Andrea Bianchi" ], "comment": "15 pages", "categories": [ "math.AT" ], "abstract": "We give an upper bound on the topological complexity of varieties $\\mathcal{V}$ obtained as complements in $\\mathbb{C}^m$ of the zero locus of a polynomial. As an application, we determine the topological complexity of unordered configuration spaces of the plane.", "revisions": [ { "version": "v1", "updated": "2020-10-19T15:56:11.000Z" } ], "analyses": { "subjects": [ "55M30", "55R80", "14L30" ], "keywords": [ "topological complexity", "upper bound", "discriminantal varieties", "unordered configuration spaces", "zero locus" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }