{ "id": "2010.09510", "version": "v1", "published": "2020-10-19T13:45:13.000Z", "updated": "2020-10-19T13:45:13.000Z", "title": "Anderson localization transition in a robust $\\mathcal{PT}$-symmetric phase of a generalized Aubry-Andre model", "authors": [ "Sebastian Schiffer", "Xia-Ji Liu", "Hui Hu", "Jia Wang" ], "categories": [ "cond-mat.dis-nn", "cond-mat.quant-gas", "quant-ph" ], "abstract": "We study a generalized Aubry-Andre model that obeys $\\mathcal{PT}$-symmetry. We observe a robust $\\mathcal{PT}$-symmetric phase with respect to system size and disorder strength, where all eigenvalues are real despite the Hamiltonian being non-unitary. This robust $\\mathcal{PT}$-symmetric phase can support an Anderson localization transition, giving a rich phase diagram as a result of the interplay between disorder and $\\mathcal{PT}$-symmetry. Our model provides a perfect platform to study disorder-driven localization phenomena in a $\\mathcal{PT}$-symmetric system.", "revisions": [ { "version": "v1", "updated": "2020-10-19T13:45:13.000Z" } ], "analyses": { "keywords": [ "anderson localization transition", "generalized aubry-andre model", "symmetric phase", "study disorder-driven localization phenomena", "rich phase diagram" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }