{ "id": "2010.08922", "version": "v1", "published": "2020-10-18T05:50:30.000Z", "updated": "2020-10-18T05:50:30.000Z", "title": "On the permanent of a random symmetric matrix", "authors": [ "Matthew Kwan", "Lisa Sauermann" ], "categories": [ "math.PR", "math.CO" ], "abstract": "Let $M_{n}$ denote a random symmetric $n\\times n$ matrix, whose entries on and above the diagonal are i.i.d. Rademacher random variables (taking values $\\pm 1$ with probability $1/2$ each). Resolving a conjecture of Vu, we prove that the permanent of $M_{n}$ has magnitude $n^{n/2+o(n)}$ with probability $1-o(1)$. Our result can also be extended to more general models of random matrices.", "revisions": [ { "version": "v1", "updated": "2020-10-18T05:50:30.000Z" } ], "analyses": { "keywords": [ "random symmetric matrix", "rademacher random variables", "probability", "random matrices", "general models" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }