{ "id": "2010.08701", "version": "v1", "published": "2020-10-17T03:04:06.000Z", "updated": "2020-10-17T03:04:06.000Z", "title": "Pointwise Convergence of Schrödinger means in $\\mathbb{R}^{2}$", "authors": [ "Wenjuan Li", "Huiju Wang", "Dunyan Yan" ], "categories": [ "math.CA" ], "abstract": "We consider pointwise convergence of Schr\\\"{o}dinger means $e^{it_{n}\\Delta}f(x)$ for $f \\in H^{s}(\\mathbb{R}^{2})$ and decreasing sequences $\\{t_{n}\\}_{n=1}^{\\infty}$ converging to zero. The main theorem improves the previous results of [Sj\\\"{o}lin, JFAA, 2018] and [Sj\\\"{o}lin-Str\\\"{o}mberg, JMAA, 2020] in $\\mathbb{R}^{2}$. This study is based on investigating properties of Schr\\\"{o}dinger type maximal functions related to hypersurfaces with vanishing Gaussian curvature.", "revisions": [ { "version": "v1", "updated": "2020-10-17T03:04:06.000Z" } ], "analyses": { "subjects": [ "42B20", "42B25", "35S10" ], "keywords": [ "pointwise convergence", "schrödinger means", "type maximal functions", "main theorem", "vanishing gaussian curvature" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }