{ "id": "2010.08632", "version": "v1", "published": "2020-10-16T21:19:51.000Z", "updated": "2020-10-16T21:19:51.000Z", "title": "Optimality of function spaces for kernel integral operators", "authors": [ "Jakub Takáč" ], "comment": "27 pages, submitted to Matematische Nachrichten", "categories": [ "math.FA" ], "abstract": "We explore boundedness properties of kernel integral operators acting on rearrangement-invariant (r.i.) spaces. In particular, for a given r.i. space $X$ we characterize its optimal range partner, that is, the smallest r.i. space $Y$ such that the operator is bounded from $X$ to $Y$. We apply the general results to Lorentz spaces to illustrate their strength.", "revisions": [ { "version": "v1", "updated": "2020-10-16T21:19:51.000Z" } ], "analyses": { "subjects": [ "47B34", "46E30" ], "keywords": [ "function spaces", "optimality", "optimal range partner", "boundedness properties", "lorentz spaces" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable" } } }