{ "id": "2010.07060", "version": "v1", "published": "2020-10-14T13:08:35.000Z", "updated": "2020-10-14T13:08:35.000Z", "title": "Dual canonical basis for unipotent group and base affine space", "authors": [ "Jian-rong Li" ], "comment": "19 pages, 2 figures", "categories": [ "math.RT", "math.QA" ], "abstract": "Denote by $N \\subset SL_k$ the subgroup of unipotent upper triangular matrices. In this paper, we show that the dual canonical basis of $\\mathbb{C}[N]$ can be parameterized by semi-standard Young tableaux. Moreover, we give an explicit formula for every element in the the dual canonical basis. Let $N^- \\subset SL_k$ be the subgroup of unipotent lower-triangular matrices and let $\\mathbb{C}[SL_k]^{N^-}$ be the coordinate ring of the base affine space $SL_k/N^{-}$. Denote by $\\widetilde{\\mathbb{C}[SL_k]^{N^-}}$ the quotient of $\\mathbb{C}[SL_k]^{N^-}$ by identifying the leading principal minors with $1$. We also give an explicit description of the dual canonical basis of $\\widetilde{\\mathbb{C}[SL_k]^{N^-}}$ and give a conjectural description of the dual canonical basis of $\\mathbb{C}[SL_k]^{N^-}$.", "revisions": [ { "version": "v1", "updated": "2020-10-14T13:08:35.000Z" } ], "analyses": { "subjects": [ "13F60", "17B37" ], "keywords": [ "dual canonical basis", "base affine space", "unipotent group", "unipotent upper triangular matrices", "semi-standard young tableaux" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }