{ "id": "2010.06833", "version": "v1", "published": "2020-10-12T21:08:56.000Z", "updated": "2020-10-12T21:08:56.000Z", "title": "Solubility of Additive Forms of Twice Odd Degree over Ramified Quadratic Extensions of $\\mathbb{Q}_2$", "authors": [ "Drew Duncan", "David B. Leep" ], "comment": "arXiv admin note: text overlap with arXiv:2005.09770", "categories": [ "math.NT" ], "abstract": "We determine the minimal number of variables $\\Gamma^*(d, K)$ which guarantees a nontrivial solution for every additive form of degree $d=2m$, $m$ odd, $m \\ge 3$ over the six ramified quadratic extensions of $\\mathbb{Q}_2$. We prove that if $K$ is one of $\\{\\mathbb{Q}_2(\\sqrt{2}), \\mathbb{Q}_2(\\sqrt{10}), \\mathbb{Q}_2(\\sqrt{-2}), \\mathbb{Q}_2(\\sqrt{-10})\\}$, $\\Gamma^*(d,K) = \\frac{3}{2}d$, and if $K$ is one of $\\{\\mathbb{Q}_2(\\sqrt{-1}), \\mathbb{Q}_2(\\sqrt{-5})\\}$, $\\Gamma^*(d,K) = d+1$. The case $d=6$ was previously known.", "revisions": [ { "version": "v1", "updated": "2020-10-12T21:08:56.000Z" } ], "analyses": { "subjects": [ "11D72", "11D88", "11E76" ], "keywords": [ "ramified quadratic extensions", "twice odd degree", "additive form", "solubility", "minimal number" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }